Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2646: 35-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36842104

RESUMO

Bacterial flagella are molecular machines used for motility and chemotaxis. The flagellum consists of a thin extracellular helical filament as a propeller, a short hook as a universal joint, and a basal body as a rotary motor. The filament is made up of more than 20,000 flagellin molecules and can grow to several micrometers long but only 20 nanometers thick. The regulation of flagellar assembly and ejection is important for bacterial environmental adaptation. However, due to the technical difficulty to observe these nanostructures in live cells, our understanding of the flagellar growth and loss is limited. In the last three decades, the development of fluorescence microscopy and fluorescence labeling of specific cellular structure has made it possible to perform the real-time observation of bacterial flagellar assembly and ejection processes. Furthermore, flagella are not only critical for bacterial motility but also important antigens stimulating host immune responses. The complete understanding of bacterial flagellar production and ejection is valuable for understanding macromolecular self-assembly, cell adaptation, and pathogen-host interactions.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/química , Flagelos/química , Flagelina , Microscopia de Fluorescência
2.
Proc Natl Acad Sci U S A ; 120(3): e2208348120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623202

RESUMO

As an important free energy source, the membrane voltage (Vm) regulates many essential physiological processes in bacteria. However, in comparison with eukaryotic cells, knowledge of bacterial electrophysiology is very limited. Here, we developed a set of novel genetically encoded bacterial Vm sensors which allow single-cell recording of bacterial Vm dynamics in live cells with high temporal resolution. Using these new sensors, we reveal the electrically "excitable" and "resting" states of bacterial cells dependent on their metabolic status. In the electrically excitable state, frequent hyperpolarization spikes in bacterial Vm are observed, which are regulated by Na+/K+ ratio of the medium and facilitate increased antibiotic tolerance. In the electrically resting state, bacterial Vm displays significant cell-to-cell heterogeneity and is linked to the cell fate after antibiotic treatment. Our findings demonstrate the potential of our newly developed voltage sensors to reveal the underpinning connections between bacterial Vm and antibiotic tolerance.


Assuntos
Antibacterianos , Potenciais da Membrana , Antibacterianos/farmacologia , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...